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DIOXETANO-CROWN ETHERS.
STABILIZATION THROUGH COMPLEXATION WITH METAL IONSl)
Yoshihisa INOUE,* Mikio OUCHI, Hidekazu HAYAMA, and Tadao HAKUSHI
Department of Applied Chemistry, Himeji Institute of Technology
2167 Shosha, Himeji, Hyogo 671-22

The first members of dioxetanocrown ethers 3 and 4 were prepared in
methylene blue-sensitized photooxygenations of 9- and 18-membered
stilbenocrown ethers 1 and 2, and the activation parameters for the
thermolyses of 3 and 4 were obtained. Thermal decomposition of the
bis-dioxetano-18-crown-6 4 was decelerated or accelerated in the pre-
sence of alkali metal salts depending upon the nucleophilicity of

the counter anion.

We have recently reported the syntheses and cation-binding abilities of some
stilbenocrown ethers.l) Singlet oxygenations of these unsaturated crown ethers
give direct access to dioxetanocrown ethers, a new category of crown ether. In
the present communication, we wish to report our preliminary results on the photo-
oxygenations of 9- and 18-membered stilbenocrown ethers and the effects of various
alkali metal salts upon stability of the dioxetanocrown ether.

Photooxygenations of 1 % solutions of stilbeno-9-crown-3(1) and distilbeno-18-
crown-6 (2) were performed at -78 or 0°C in dichloromethane or chloroform-d contain-

ing 1.5 x10-4M methylene blue(MB) as a sensitizer with continuous bubbling of oxygen
gas.z) The irradiation of the solution for ca. 10 min led to complete consumption
of the stilbenocrown ether, as shown by NMR monitoring. The formation of dioxetane
3 or 43) was proved by the appearance of an 0-O stretching band around 880 cm-l'onIR
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Table 1 Spectral Changes upon Photooxygenation of Stilbenocrown Ethers 1 and 2
and the Subsequent Thermolysis of the Resulting Dioxetanes 3 and 4

1o o)

2 A A 2
] —— 3 — 3 § < 4 - 2
IR(cm’l) 1630 (C=C) 1200 (C-C-0) 1720 (C=0) 1200 (C-C-0) 1620 (C=C)
880 (0-0) 870 (0-0)
1y NMR (&) 7.13(s,10H) 7.0-7.5(m,10H) 8.07(m,4H) 7.0-7.5(m,20H) 7.15(s,20H)
(CDC13,TMS) 7.47 (m,6H)

4.30(t,4H) 4.4-4.8(m, 2H) 4.50(t,4H) 3.7-4.5(m,16H) 3.96(s,16H)
3.97(t,4H) 3.7-4.1(m,6H) 3.90(t,4H)

and by the drastic changes in chemical shifts of the crown-ring and phenyl protons
on 1H NMR spectra; the spectral changes during the course of reaction are shown in
Table 1.

Upon heating, the dioxetanes 3 and 4 gave diethylene glycol dibenzoate 5 in
quantitative yields without concomitant emission of light. Thermal decomposition
of 3 or 4 in the presence of 9,10-dibromoanthracene(DBA) as an energy acceptor
however produced sensitized chemiluminescence, the shape of which was exactly iden-
tical to the DBA f1uorescence.4)

Thermolyses of the dioxetanes 3 and 4 were carried out at 60-85°C in toluene
in order to evaluate their thermal stabilities. In these experiments, the stil-
benocrown ethers 1 and 2 were photooxygenated in dichloromethane3) to the corre-
sponding dioxetanes according to the same procedure mentioned above. The result-
ing dichloromethane solution of the dioxetane was passed through a very short
silica-gel column at 0°C to eliminate the sensitizer methylene blue, which was
shown to enhance the decomposition rate upon thermolysis. The solution thus ob-
tained was evaporated to dryness at 0°C at a reduced pressure and the solvent

5) containing 1.x10_3M DBA was added to make ca. 1% solution of the dioxetane.

toluene
The decompositions of both dioxetanes, monitored by the chemiluminescence decay at

433 nm, obeyed first-order kinetics. Arrhenius plots gave excellent straight lines
(EF >0.999) for 3 and 4. The activation parameters obtained are presented in Table
2 along with those for the reference dioxetane, 1,6-diphenyl-2,5,7,8-tetraoxabicyclo-

[4.2.0]octane(7),6’7) prepared from 2,3—diphenyl-1,4-dioxene(6).8)

hv/MB/0, /\
—-—-% U
Ij j aay PnCOz OCOPh + (hw)

6

As shown in

Table 2, no evident deviations in activation parameters are seen at least for the
dioxetanocrown ether 4,9)

Although the above results mostly coincide with those reported previously,
interesting may be how the stability of the dioxetanocrown ether 4 is affected

whereas somewhat different parameters are given for 3.
7,10)

through complexation of a cation in the crown cavity. An attempt to stabilize
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Table 2 Activation Parameters for Thermolyses of Dioxetanes 3, 4, and 7 in toluene

+ +
Dioxetane Ea, log A AR, o0, AS,4g Rate con:;.-l
kcal/mol kcal/mol cal/mol-deg at 25°C, ’'s
b)
7 24.8,P) 12.4,P) 24,2, -3.6°) 1.66 x10°°
(24.8)°) (12.39°%)  (24.2)%) (-3.8)°) (1.62 x107%)°)
3 24.3, 12.9, 23.7,4 -1.5 1.18x107°
4 24.5, 12.3g 23.9; -3.9 2.66 x10°°

a) Calculated from Arrhenius equation. b) Ref. 6. c) Ref. 7; the original as*
value reported for 7, i.e. -1.8 cal/mol-deg, must be miscalculated, since our own
calculation using their data gives the different value presented here.

the dioxetane 4, by adding finely ground potassium bromide to the toluene solution
of 4, resulted in failure; the decomposition rate was not affected by the addition
probably due to the poor solubility of the salt in toluene. We finally used
ethanol®) as a solvent and measured the decomposition rate constants of 4 and 7 at
74.4°C in the presence of excess amounts of various alkali metal salts. The re-
sults are presented in Table 3. The decomposition of the dioxetanocrown ether 4
was fairly decelerated by adding the salts with counter anions of low nucleophilic
constantsll)qlgl.03), while the same salts had little effect on the decomposition
rates of the reference dioxetane 7. That the magnitude of decelgration is in
rough agreement with the tendency of cation extractabilities(K+:>Rb+'>Cs+:>Na+:>Li+)
of the parent l8-crown—61) may be taken as another support for the stabilization
through complex formation. The salts with anions of n >3, on the other hand, gave
rise to accelerated decompositions of both 4 and 7, which may be ascribable to the
nucleophilic attack by the anion or, more probably, to the electron-transfer inter-

action between the anion and the dioxetane.lz)

Table 3 Decomposition Rate Constants(kj;) in Ethanol at 74.4°C in the Presence of
Alkali Metal Salts

3_-1

Counter gﬁgiig— k, for 4, 10 s k, for 7, 107 3s71
anion const. (n) Lit  Nat k¥ m*  cst it wat S
None - R N} | S —_ 0.79%

clo, <0 1.10 0.59 0.62 0.79 0.85 0.78

NO5 1.03 0.94 0.74 0.69 0.65 0.84 0.97 0.78 0.83 0.88
c1” 3.04 5.37 1.73 1.12 1.52 1.01 0.76

Br 3.89 6.29 3.21 2.38 1.54

SCN~ 4.77 7.9 >30

1 5.04 >50 16.5 16.3 24.3

a) Rate constant in the absence of a metal salt.
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